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ABSTRACT 

Clumpiness is likely to be generic to cold dark matter cosmologies. We consider 
cold dark matter models with cosmic strings and textures appropriate for galaxy for- 
mation. CDM clumps with a density of lO’Mopc-a are generated at redshift - zeg and 
a sizable fraction of them may survive to today. The most numerous clumps should 
have dense cores of mass - lo-‘(1 GeV/M.)t Ivia, where A4. is the mass of the dark 
matter partide, and might contain up to 10-s of the CDM mass. Even in c&o&al, 
unseeded cold dark matter models, there is also likely to be clumpiness, developing 
when the first rare fluctuations go non-linear, and surviving on scales of up to lO*Ma 
in galaxy halos. Observable implications include possible dark matter cores in globular 
clusters, and in galactic nuclei. The enhanced annihilation rate in clumps can lead to 
a significant. contribution to the diffuse -r-ray background, as well as emission from the 
Galactic center. Results from terrestrial dark matter detection experiments might be 
significantly affected by clumpiness in the Galactic halo. 
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I. INTRODUCTION 

Cold dark matter provides a generic solution to the dark matter problem. Al- 
ternative candidates abound for stable weakly interacting relic particles from the early 
universe. The favored mass scale for these particles is at or above the electro-weak 
unification scale (- 100 GeV), since any new symmetries which require the introduction 
of new, exotic, and possibly stable, particles, such as SUSY, should only be dominant 
above this scale. Relic massive particles were initiahy in thermal equilibrium, and 
freeze-out estimates of their abundances, combined with direct searches for particles 
and their annihilation signatures, constrain their masses phenomenoldgicahy to exceed 
- 1GeV. In fact, for dark matter particles to be cold (v << c) at the epoch when the 
universe was first matter-dominated, at a redshift 1 + s = 4 x 10’ rthr, we only require 
M, > O(1) keV (Bond & Ssalay 1983). 

Non-baryonic dark matter is also motivated by inflation, which requires that 
R = 1 in contrast to the standard primordial nucleosynthesis constraint (Olive et al. 
1991) that f-&h2 = 0.02. A lower bound on the density of non-baryonic dark matter may 
plausibly be imposed by the observed dark matter in halos, clusters and superclusters 
of galaxies, which amounts to G - 0.15 with an uncertainty of about a factor of 2. 
Combining all of the previous considerations, we conclude that a reasonable working 
hypothesis is accordingly that the prevalent dark matter is non-baryonic, cold and lies 
in the range bounded by 

0.1 .$ nc.,m 5 1. (1.11 

Cold dark matter in the context of inflation has received considerable support for 
its success in accounting for many features of large-scale structure in a 0 = 1 universe. 
The inflationary prediction of Gaussian, scale-invariant curvature fluctuations leads to 
the generation of large-scale structure via gravitational instability and growth of linear 
perturbations. Successes include the simultaneous explanation of galaxy-galaxy corre- 
latcons on small scales, halo abundances and rotation curves, galaxy peculiar velocities, 
and large-scale voids, filaments and superdusters (e.g., Frenk et al. 1988). However 
there are also notable failures, including the anguhrr correlations of galaxies to z - 0.2 
(Maddox et al. 1990) and the variance in the cell counts of gahuies (Efstathiou et al. 
1990). 

Consequently, rival theories of large-scale structure formation continue to merit 
attention. One class of such theories involves the formation of topolog& defects in 
an early phase transition. These relics of high density interact dynamically on horizon 
scales throughout the ensuing history of the universe, and provide characteristically non- 
linear, non-Gaussian seeds for large-scale structure. Examples of such non-linear seeds 
include cosmic strings (Vile&in 1985) and textures (Turok 1989). Of these possibilities, 
cosmic strings and textures have been simulated in sufficient detail to be able to develop 
a quantitative model for galaxy and cluster formation. 

We shall henceforth assume that the universe is dominated by cold-dark matter. 
Our aim:is to study the degree to which some of the cold dark matter may retain 
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very high densities in the context of three well-developed scenarios for cosmic structure 
formation, fluctuations induced by cosmic strings @II), textures (SIII), and inflation 
($IV). In the first two cases, one may have to dispense with inflation, and f&da, is then 
bounded by (1); in the latter case f&m = 1. In §V we discuss the survivability of 
clumps. The observable implication of CDM clumps is discussed in the final section. 

II. COSMIC STRINGS 

In models with CDM and a sufficient amplitude of density inhomogeneity on 
small scales, nonlinear structures will form before matter-radiation equality. This is 
true of models with Gaussian perturbations with a power law spectrum of n 2 - 2 on 
the smallest scales or for models where the structure is seeded by cosmic strings. In this 
section we will look at cosmic string models and assuming that the string mass parameter 
takes the correct value so as to seed the observed homogeneities. Thus the linear mass 
density of strings, p, satisfies Gp/cr - 10-s. In Gaussian models the nonlinearities will 
be distributed roughly homogeneously throughout the universe, with the density at a 
typical point deviating significantly from the mean. However for inhomogeneities which 
are created by cosmic strings, the nonlinearities will be isolated. The density at most 
points will be quite near the mean but the density will deviate significantly from the 
mean in isolated regions. Since self-gravity of the CDM is generally unimportant in the 
radiation era, the nonlinearities will not vi&&e. Thus one will not obtain the large 
density contrasts found for virialised objects. Typically the density will remain a few 
times greater or smaller than the mean, the particles just moving ballistically in the 
expanding universe. 

Given that the overdensities do not grow many times greater than the mean 
density, one must wait until zeq for these nonlinear structures to collapse and viriahze. 
Once the structures have collapsed in all three dimensions, their density will no longer 
shrink with the expansion but will remain constant. Secondary infall of CDM onto 
these clumps will cloak these objects in virialized halos of smaller density. However for 
the purposes of this paper, the central dense c&s are the most interesting. Since the 
collapse occurs at I - s,,, the density of the cores is approximately the density of the 
universe at zes or 

pcorc - pcq = 8.7 x 10” h”R: M. pc-s, (2.1) 

assuming that CDM is the dominant form of matter besides photons and neutrinos. 

Let us first consider the perturbation immediately around a moving piece of 
string. The primary effect of a passing piece of string is to give a velocity boost to the 
matter surrounding it. The comoving distance that a CDM particle moves before zeq, 
given an initial peculiar velocity v, at time ti, is 

A= 7J. = e,c. 

Immediately surrounding a moving segment of.str&g, the size of the velocity boost is 
4xG@7 = e,c, where 8 and 7 are the usual relativistic velocity factors of the string. 
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FIGURE 1 Shown in the phase space diitribution of particles ia the L direction after a segment of 
string pured through thes - y plane. Bel.on is plotted the density of particles for two cases; s) the 
velocity boart given to the partick by the pauiag striag is greater than the velocity diipenion 
and producea m overdensity of two, and b) the velocity bee4 is smaller than the diipenion and 
a ~mallcr ovcrdensity results. 

Typically & % 1, and so c, w lo-‘. The direction of the velocity boost is toward 
the surface swept out by the string. The two streams of particles moving toward each 
other will start to overlap. If the boost is greater than the velocity dispersion of the 
particles, then in the overlapping region the two streams of particles will cause a density 
enhancement of a factor of two -as illustrated in figure la. However, if the velocity boost 
is less than the velocity dispersion, the overdensity will become small as illustrated in 
figure lb. In either case, the overdensity will not grow in the radiation era but the region 
of overlap and hence the region of overdensity will grow logarithmically with time. The 
total thickness of the wake at t., is just 2A. At zeq the nonlinear wakes (i.e., figure la) 
will collapse while the linear wakes (figure lb) will have to wait for some matter era 
growth before they can collapse. We are interested in the densest bound objects, and 
so we will ignore the linear wakes. 

Which wakes will be linear and which nonlinear? Since the velocity boost given 
by a fiassing string is independent of epoch and the velocity dispersion of the CDM 
will decay due to the expansion of the universe, only wakes produced after some critical 
redshift, .~e.~r, will produce nonlinear wakes. Since the size of the wakes is an increasing 
function of the time at which they are produced, this will correspond to a lower cutoff 
to the size of nonlinear w’akes due tq CDM free-streaming. 
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In general the velocity dispersion of the CDM is given by 

&dm(z) N &:A J&z - 10-q.$Jt (F).! (q=)+> (2.3) 

where the redshift at decoupling is Ed t ec = gdccTdec/Tor To is the present microwave 
temperature m 2.7 K, and g&c is the effective fractional increase in relativistic degrees 
of freedom at z&c compared to today. The condition that the string perturbations are 
not damped by free-streaming is v,dm < s,c. Hence the redshift prior to which damping 
in unimportant is 

E.C 
Zdrmp = 

Vcdm(o) 
- 5 x 10s (+)* (g&y (g$. (2.4) 

The preceding analysis assumes that, the curvature of the string is smaller than both 
the free-streaming length at production and the width of the wakes. The smallest loops 
around at time ti are the one which are just about to lose all of their mass to gravitational 
radiation and have a length * 100 G@i/c w lo-‘& , and ‘a typical curvature of roughly 
& of their length. These small loops, in fact, have most of the umss. The width of 
a wake produced by these loops at ti is is roughly c.ln(t.q/li)/ - IO-sctiln(t.q/ti), SO 

the smallest loops will produce wakes which are about the size of the loop or somewhat 
bigger for any value of G/L. Thus the nonlinear overdensities formed by these wakes 
will not be the simple planar structures described above, but will be considerably more 
complicated. Nevertheless the amount of nonlinear CDM produced by a length of 
relativistic string will be roughly the saute as whether that string is part of a small loop 
or part of a straight string. The effect of the more complicated geometries would be 
to make the nonlinear regions overlap without changing the total mass involved. This 
would lead to overdensities larger than 2 and thus collapse somewhat before .seq and 
formation of denser virialieed objects. 

To estimate the total mass contained in these nonlinear overdensities, note that 
the nonlinear mass produced by a piece of string is given by 

~f4.1 - =i%dmOiA~ dti 
aA m 2s (2.5) 

1 

where A/u is the thickness of the wake at se4 scaled to physical units at time ti, and A 
is the physical area swept out by the string. Now the mass of the segment of sthng is 
just -yp6L. Averaging over all of space we find the density of nonlinear mass produced 
at a given time: 

dpnl 
-xi - 2r.BG&dm&Cfih? 

I 
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where p. is the total density of strings at time ti. Using p = szIsotil we may calculate 
the fraction of the CDM contained in the nonlinear structures at .sez which were seeded 
at a given epoch: 

dfnl,eg 
dhZi 

w ;n.ln”’ R.G 5. 
z-4 P 

(2.7) 

The fraction of the cosmic density in strings, a., will be constant in the radiation era, 
given by the scaling solution. We may thus integrate this equation for .zes to s&,,p 
finding the total fraction of CDM which is nonlinear at seq 

[ 1 
2 

f qeq - R. lnF 

The density in small loops which are just about to decay via gravitational radiation 
should dominate, giving the scaling relation R. cc m. The coefficient in front is 
somewhat uncertain, depending pn the distribution of loops produced, the amount of 
loop fragmentation, and effects due to the back-reaction of the gravitational radiation 
on the loops. However R. is probably in the range lo-’ - 10-s. The logarithmic term 
in (2.8) would give a factor of - 10 for WIMPS. Other candidates for dark-matter may 
give a somewhat different value. We thus obtain for the fraction of CDM particles which 
virialize at *=z: 

f nl,cp ~- 0.1 P-9) 

We must require that an object collapse in all three directions before the density 
becomes constant, being unaffected by the universal expansion. This is clearly violated 
by the planar wakes discussed above. However as mentioned above most of the nonlinear 
structures are caused by the smallest loops with sizes comparable to the thickness of 
the wakes. These loops will be moving rapidly due to the thrust from the gravitational 
radiation. Numerical determinations of the gravitational radiation from loops have 

-found that the typical ratio of momentum emitted in gravity waves to power emitted in 
gravity waves is i/E = 0.1/c. Thus we expect that the loops which have lost half their 
mass will be moving at - 0.1~. The period of the loop of mass M is O.SM/(pc), so the 
distance traveled in one oscillation is - O.O5M/p. Now the typical radius of a loop of 
mass M will, of course, depend on its shape, but for many simple non-intersecting loop 
trajectories it is - O.IM//.L. Thus we see that the wakes left by these smallest loops 
will corrugated by the loop oscillations, and the typical distance between corrugations 
will be about the same as the transverse size of the accretion wakes. Furthermore, as 
shown above, the nonlinear region around the wake will be roughly the same size as this 
transverse dimension. The correspondence of these three length scales is not a lucky 
coincidence, rather it is a~ consequences of the way these quantities scale with JL. They 
would all be the same, no matter what the value of JJ was. The significance of the 
coincidence between the loop size and the wake thickness is that the accretions wakes 
twill collapse in two dimensions rather than one. The collapse will be along a curve 
given by the loop trajectory. The significance of the coincidence of the:corrugation 
length to the transverse size is that these corrugations will cause the accretion wakes 
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to fragment into small cloudlets once the CDM becomes self-gravitating at ses. Hence 
the accretion wake will collapse in all three dimensions at zes and the value of pep will 
properly represent their density. 

Now let us consider the size, mass, and internaLvelocity distribution of these 
clump cores. Their physicsl sise is roughly the comoving size of the wake thickness 
scaled to zes or 

&ore N 4Cli 
J- 

++ E 0.01~~ (2.10) 
f L 

1, “‘In2 nosh-4, 
Idamp 1 

so their masses are in the range 

core = P&,,, E 30Mo 1, [( 
2 

M &hy )I n,Z h-4 (2.11) 

and their internal velocity dispersions are in the range 

The distribution of masses of clump cores is roughly 

30Mo ’ dM.,,. 
Q&.,.) dM,o,. = InM - [. 1 COW. ML ’ 

(2.12) 

(2.13) 

so that each mass scale has almost the same amount of mass in it but with a logarithmic 
weighting toward the low mass end. 

The cloudlets we have just considered will become centers of accretion of more 
CDM. Hence we have referred to these cloudlets as cores. These cores will accrete 
halos. These cloudlets are just fragments of the accretion wakes of the sthngs so they 
will necessarily be near neighboring clumps which will compete for the surrounding 
CDM. Even if the clumps were isolated the 

r 
could at most accrete mass proportionally 

to the redshift after sep leading to a p N r- halo. The large fraction of mass already in 
halos (equation 2.9) suggests that competition will limit the average smooth halo to be 
5 10 times the core mass (accretion of other much smaller clumps may lead to clumpy 
halos). Competition will also lead to halos with a steeper density profile. 

It is important to consider the dumpiness of the CDM medium today, i.e., the 
mean square density. Given the steep density profile of the halos of the clumps it is 
clear that the clumpiness will be dominated by the cores of the clumps. Let us suppose 
that a fraction fcl of the clumps survive until today retaining their initial density. The 
clumpiness of CDM today is then 

c z a:,, - fn,fepq3 - lo’rfJbsR& (2.14) 

We consider the appropriate value of fcl in §V below. 
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III. TEXTURES 

Another theory in which very large overdensities are produced at early times is 
the theory of cosmic textures. Turok (1989) h as shown that although textures do not 
have any isolated defects, such as sfrings or monopoles, they do have a a topological 
charge or knottedness distributed throughout space. As the cosmological horizon grows 
the amount of charge within-the horizon will also grow just because of fl fluctuations. 
Once the knottedness within the horizon becomes great enough, the knot will collapse 
to a point and unwind by temporarily leaving the vacuum manifold. These unwinding 
points will lead to early formation of bound objects (Gooding, Spergel, and Turok 1991) 
and must inevitably generate substructure on all scales of interest. 

Gooding ef al. (1991) used~the turnaround radius calculated via linear theory 
as an indicator of the final virialized.radius of a given shell of CDM. However, this is 
valid in the matter era but not necessarily in the radiation era. As we have seen for the 
planar perturbations produced by cosmic strings, CDM may turnaround and then just 
keep going out the other side. This is because in linear theory in the radiation era the 
inertia of the CDM dominates, the self-gravity of the CDM being totally negligible. For 
the planar geometry of a cosmic string wake, the maximum overdensity of 2 is reached. 
However for perfectly spherical accretion, the geometry will cause the density to diverge 
in the center even ignoring the CDM self-gravity. It is then not so clear that nonlinear 
effects may allow the CDM to vi&&e in the radiation era. Thisis a crucial issue to 
us since a centrddensity much larger than the density at z=; may result, leading to a 
much larger dumpiness factors. 

To address the issue of radiation-era virialization, let us first assume no such 
virialization and see if this is self-consistent. First let us note that the claim is that 
collapsing textures become more spherical as they collapse (Turok and Spergell990). If 
this is so then the central regions of the induced perturbation should be very spherical 
indeed. Since the texture knot collapse approaches the speed of light there is no sense 
in which the collapsing knot can be moving, the collapse being just as spherical and 
stationary in one rest frame as in another. These considerations lead us to take the 
spherical approximation fairly seriously. The net effect of a collapsing texture is a net 
velocity impulse inward which is independent of radius in the inner regions (Turok and 
Spergel 1990). The magnitude of the impulse is 

vtex = etc RS 9 x lo-‘c = 270 kms-’ (3.1) 

where st is determined by the parameters of the theory and the numerical value was 
taken from an estimate of the normalization by Goading et aZ. (1991). This velocity 
impulse is two orders of magnitude larger than that expected from strings indicating 
that we expect much huger clumps for textures than for strings. The CCBE DMR 
detection of CMB fluctuations (Smoot ef al. 1992) is consistent with this value of c 
provided that galaxy formation is sufficiently biased, b= 3 f 1 (Pqn, Spergel and Turok 
1992). 
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If we ignore self gravity we may solve the equation of motion for the comoving 
radius of a shell and the resulting overdensity 

r(tpti) =I73 - EE$+ 
1 

l+J(r,t,ii)=C $lgi= 

2 (yln$’ +rZ 
.tre.Ud I _’ 

( ” ~~2 
!hdLq + 

ai 

\ ra 

f < Wex ti ---hi 
% 1 (3.2) 

where we have summed over the incoming and outgoing stream of particles where they 
overlap. The T -’ divergence of the .density is just a kinematical effect due to the 
assumption that ah of the particles are on exactly radial orbits. The gravitational 
potential from this mass distribution near the center is 

@P(r, t) = ;~~dm~,,2~(~)2 (;ht)‘h- ;$,ex2 (h-$‘hr r < ,qq&h~ 

(3.3) 
which diverges logarithmically near the center. We must assume that the singularity 
at the center gets softened at sufficiently small radii so that we do not produce a black 
hole! However this can be at a very small radius since the divergence is logarithmic. 
The fact that the potential diverges at the center says that the solution (3.2) is not 
really self-consistent. The large potential welI depth will cause the particles to move 
much faster at the center than is indicated by equation (3.2). However, this does not 
necessarily indicate that the particle will virialise (i.e., start to oscillate around the 
center) after passing through the center. In order for that to occur the particles must 
loose a significant fraction of their energy as they pass through the center. The energy 
loss is given by 

AE -. -= 
m / 

@(r(t), t)dt = 
/ 

&(T, i)$ dr (3.4) 

which is to be compared to the kinetic energy per unit mass. According to equation 
(3.3), this is 

K.E. 1 
- = p.2 (Z)’ . 

m (3.5) 

Clearly the logarithmic divergence of the potential is an integrable divergence in equa- 
tion (3.4) and has no great~effect. Comparing equation (3.3) and (3.5) we see that the 
effect of the self gravity of the CDM is negligible until u u %, with some logarithmic 
corrections. This is just the usual result of linear theory. .No viriahzation will occur 
during the radiation era. As in ithe case of strings the clumps will not virialise until seq. 

The clumps which first collapse at zc9 will be much the same as in the string 
scenario, the biggest difference being :that the velocity impuk which produces the 
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dumps is lo-sc rather than 10-‘c. Scaling equations (2.4), (2.10), (2.11), and (2.12) 
we find 

(3.6) 

2 
3, =d-p *es 

Zd.mp -% )I 
To estimate the fraction of matter which is contained in these clump cores we can use 
that the rate of knot unwinding per unit time, per unit comoving volume in the radiation 
era is (Gooding et al. 1991) 

dn 
=k$ 

dV,o& 1 
k .., 0.04. 

Thus the fraction of the volume accreted is 

f nl,eq = dn e (+r+)” & = F&f byI4 .-u 1()-4. (3.8) 

In contrast to the case of strings, a very small fraction of the matter wiII viridize at 
matter-radiation equality. We also see from the above that the mass distribution of 
clump cores is 

(3.9) 

which is similar to equation (2.13) for strings, 

The kinematical p 5 t e-Z divergence encountered in the radiation era persists in 
the matter era if we continue to insist on radial infaIl. That this is generic for radial 
collapse inchrding the effects of viriahzation has been shown by Fillmore and Goldreich 
(1984). This is important for us since the dumpiness of an object with such a profile 
diverges. Two effects wiIl moderate this. One is that the GDM particles did not start 
out with zero velocity dispersion. The smah initial thermal velocities wiI.l cause the 
particles to miss the center. Secondly, the outer regions of a collapsing texture is less 
spherical than the inner region and the impulse given tom the partides wiIl not be directly 
exactly toward the center. It is reasonable to assume that these two effects wiII prevent 
this kinematical divergence from persisting long after the texture is seeded. Outside the 
core region which collapses at .zeq (i.e., for r > *In?), the density profile falls off as 
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r-1 Purely radial infall will give it the p - r -’ already encountered when it virializes. 
On the other hand, if the infall is highly non-radial or highly non-spherical then particles 
will (roughly) maintain their radial ordering after they virialise, leading to a p - r-f 
density profile. The dumpiness of such an outer r-j halo grows logarithmically with 
radius. Thus to understand the clumpiness we must understand the outer halo of the 
clumps. 

Clumps seeded by textures will accrete a much more substantial halo than string- 
seeded halos. This is because the fraction of matter in clumps is quite small at zeq and 
because the clumps are isolated unlike fragments of a string accretion wake. Thus there 
is not much competition between clumps, and the p - rLg halo mentioned above has 
a chance to come into existence. As indicated in Gooding et al. (1991) the 7-i linear 
density profile induced by a collapsing~knot is truncated at the comoving horizon when 
the knot was seeded, i.e., ct;/q. Clumps seeded in the radiation era will accrete up to 
their truncation radius at a redshift 

GCC = ctze,l+ - lo+ 
I I 

Accretion after I,, will lead to a much steeper density profile and will not lead to in- 

creasing dumpiness. At .z.~~ the physical accretion radius will be a factor of (1 J’ c lnh 

times larger. It is the logarithm of this factor which gives the additional clumpiness 
from the outer halo, a factor of 14 for the largest clumps to a factor of 8for the smallest. 
Here we will take a correction factor of 10. Our estimate of the clumping factor is thus 

c = &,j - ~“f~l,,,fdz.,s N 100f~,hs@ (3.11) 

where as above fcr is the survival fraction of the clumps. 

We should mention that the masses of the halos of the clumps are much larger 
than that of the cores, because for a r- i linear density profile the comoving accretion 
radius grows as the expansion f&ctor, and thus the mass accreted grows as the cube of 
the expansion factor. Combining (3.6) and (3.10) we find 

&do = t3.12) 

Note that Mhd,, is independent of ct. Of course, in this scenario these halos are actually 
the halos of galaxies and clusters (Turok 1989). The significance of CDM clumps in 
the texture scenario is quite different than clumps in the other scenario for this reason. 
There is<really no:difference between the clumps and other bound astronomical objects. 
Galties and galaxy clusters are just the large mass end of the clumpdistribution. 
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IV. INFLATION 

The canonical CDM model is the residue of an inflationary epoch that sets f? = 1 
and generates a Zel’dovich a Gaussian distribution of primordial curvature fluctuations. 
The spectrum approaches the n = -3 limit on subgalactic mass scales, where non- 
linearity occurs almost simultaneously at a redshift 1 + +,i - 30/b, where the bias 
factor b is the inverse of the rms fluctuation amplitude in the dark matter on the 
8h-‘Mpc scale where fluctuations in the galaxy counts have unit amplitude. Galaxy 
peculiar velocities and the correlation function slope, on small scales, and large scale drift 
velocities, clusters, superclusters and voids on large-scales, constrain b to lie in the range 
1.5 5 b $2.5. The issue of whether there is a unique value of b which simultaneously 
satisfies all constraints is controversial, and is not directly relevant to our discussion. 
We henceforward adopt a value b = 2 for illustrative purposes. 

Mass scales condense hierarchically according to the cold dark matter prescription 
for the fluctuation power spectrum (6k(’ 0: k”*w where the effective spectral index n-5 
is a function of mass scale M. The time at which a fluctuation containing mass M 
begins to collapse is given by t 0: M”, where o = (ra=ef~. + 3)/4, with o and n,s varying 
from 0.12 and -2.5, respectively, at lO*Mo to 0.2 and -2.2, respectively, at lO’sMa. 
We shall assume that sufllciently rare and isolated fluctuations, at say the 2~ level, are 
able to undergo collapse until nonlinearity on larger mass scales incorporates them into 
larger mass-scales. We distinguish successive scales by a factor 2 in filter scale, since 2u 
fluctuations are approximately a factor 2 smaller in mean diameter than the r&s filter 
scale. 

For survival, we must require a large density contrast to have developed. If 
the smaller scale fluctuations have a density contrast of - 100, they should be able 
to survive tidal disruption or dynamical friction drag when its environment undergoes 
non-linear collapse. This condition is satisfied, for a relative ratio of filter 5cdes of 
2:l as appropriate to a 2~ fluctuation, provided that (I .? 0.15. This translates into a 
minimum mass scale of - lO*Mo for surviving substructure. A more refined argument 
is given by Silk and Sealay (1987), but for the present purpose, it suflices to note that 
the clumpiness factor is sensitive, not to the minimum mass scale, but to the density at 
which non-linearity occurs and to the mass fraction f in surviving clumps. We estimate 
that f -. 0.01, with - 10 percent of the mass being present in - 2u fluctuations and 
- 10 percent of the mass in these fluctuations at turn-around being trapped in the cores 
at a density enhancement of &I of - 100, relative to the turn-around density, this latter 
estimate assuming a p E r- ’ density protile. Our inferred clumpiness factor is therefore 

c = f5.5;y&* = 2 x 1o4&.-!& 
[ 15 lS\4]’ 

l+ (4.1) 
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V. THE FATE OF CLUMPS 

We have established that, in the scenarios considered above, the CDM will be very 
clumpy at early times. Crucial issues are whether the clumps of CDM will survive until 
today and where they will be located: First consider survival in scenarios in which the 
CDM is seeded. We see from equations (2.13) and (3.10) that in the string and texture 
scenario most of the clumped mass is in the very smallest clumps (by a logarithmic 
factor). Thus what happens to the small clumps is the most important issue. The 
characteristics of these clumps are given by the lower limits of equations (2.10-12) and 
(3.6), i.e. 

M core =peq em, - 0.02 M. Lcs 

vcorc = ‘pre --0.2kms-‘L ($-)’ (9)’ ($$)’ 
J- are .x Z 

(5.11 . I 
where c is c, or st for strings or textures, respectively, and L is a logarithmic correction 
factor given by 

L=l+ h=$pJ =ltO.27+&)(~)*(&)*(&)~~;%-~]. 
ln( 2.sxlo')(lo-'~j 

(5.2) 
Note that the value of c does not enter except through the logarithmic correction term; 
thus it makes little difference whether it is strings or textures which we are talking 
about. This is easy to understand. The size of the seeded~objects is equal to the 
velocity boost given by the st.ring or texture. The smallest object produced are those 
for which the velocity boost is equal to the velocity dispersion. Thus the comoving size 
of the smallest objects is just the free-streaming length of the CDM particles. This free- 
streaming scale only grows logarithmically with time in the radiation era. Since s&c is 
proportional to s we have a logarithmic dependence on L. Thq size and mass of these 
smallest clumps is thus generic. Any theory which induces sufficient inhomogeneities on 
small scales wiIl have produce nonlinear objects in the radiation era with a small mass 
cutoff similar to that es&mated here. The reason Gaussian initial conditions with a 
Harrison-Zel’dovich spectrum does not is because there is not sufficient power on small 
scales and the Gaussian distribution makes fluctuations much larger than the rms very 
rare. The reason that strings and textures do produce these small clumps is partly due 
to their non-Gaussian nature in which the large fluctuations in the form of accretion 
wakes of strings or collapiing’texture knots are relatively common. 

The cores of the smallegt CDM clumps are very similar whether seeded by strings 
or by textures. This is not the case for the halos. We have argued that in the string 
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scenario accretion is highly suppressed, the halos being - 10 times more massive than 
the cores. In the texture seeded scenario the situation is reversed with the accretion 
factor muchgreater than seq. From equation (3.12) we see that even the smallest clumps 
accrete halos with characteristics 

Riu~o - 
&q&dm(o)&q 

4 ~[zeq~~~(o~] -3kpcL (+--)” (~)*(~)‘n,lh-’ 

Mh.lo -peq( ~csim(0)teq)5 - 10” MB (+J (~)‘(~)5l;~h-~ 

v,,,.-0.4kms-1L-i (2)” (F)‘(E)’ 

(5.3) 
where the logarithmic correction factor, L, given by 

L = If h* 
ln( 2.5~10’)(10-‘q 

=1+0.12ln [(&) ($$ (&)i (&)*n;‘h-‘] 

(5.4) 
The mass of the halos may determine the ultimate fate of the cores of the &mps. 

A crucir3 stage for the evolution of the CDM clumps formed at seq is the epoch 
when they start to interact with neighboring clumps. In the string scenario, clumps are 
right next to their nearest neighbor clumps and will start to cluster and merge soon after 
req. In the texture scenario, the collapsing knots are isolated but will rapidly start to 
accrete a large halo. They will not start to interact with their neighbors until well into 
the matter era. Note that it is the halos which are most important for the interaction, 
not the dense cores. The type of interaction may take several forms. One clump can 
accrete another clump into their halos. If the accreted clumps have sufficiently different 
masses then dynamical friction will be ineffectual in dragging smaller clump in toward 
the core of theother. Thus the two may coexist, one in the halo of the other. On the 
other hand if the two clumps have similar enough masses then dynamical friction will 
cause the two to spiral toward each other forming a single undifferentiated object. In 
other words, the two clumps will merge. In the string or texture scenario, we are most 
interested in whether the smallest clumps will merge with each other since they have 
most of the dumpiness. Merging of small clumps can be shut off if they are accreted 
by much larger objects, since the two smaller clumps will be tidally separated by the 
gravitational field of the larger object. This can be an effective means of preserving 
the small clumps because in these scenarios perturbations on a large range of scales 
exist simultaneously. The largest objects grow by accreting the surrounding medium, 
including much smaller bound object, and not by mergers with similarly sized objects. 
The structures in the string or texture scenario grow predominantly by secondary infall 
rather than hierarchical clustering and merging. Of course at late times, 1 + E - 1, 
if the structures seeded around .zeq have accreted most of the matter in the universe 
then merging may .become important, but on a scale much larger than the clumps. 
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Just how much of the clumpiness might be removed by the initial merging stages is not 
totally clear. If the merger remnant retains a dense core then the clumpiness may not 
be significantly effected by this process at all. In any case there should be a significant 
fraction of clumps which do not merge. Determining the effective survival fraction, 
fcl, from this early merging epoch requires more study, however we feel that values 
fcl ,?, 0.1 are quite plausible in the string scenario and fcl w 1 are quite likely in the 
texture scenario. 

In the inflationary scenario, the clumps are much less dense and considerably 
more massive than both the smallest clumps in the texture scenario and the largest 
clumps in the string scenario. They will also be subject to a period of potential merging 
soon after they form. The clumps, being 2~ peaks of a Gaussian random field-Sltered at 
the 10’ M0 scale, will tend to he fin high density regions filtered on a much larger mass 
scale, i.e., they are biased (Bardeen. et al. 1986). Thus the clumps will tend to be more 
bound to their nearby neighbors than if they were distributed randomly. This may make 
them more subject to mergers in some cases, but may also prevent mergers by placing 
them in a high velocity dispersion environment. We note that galaxies, which also may 
have been formed from 2-u peaks of a Gaussian random density field, may retain their 
identity for long periods of time in the high velocity dispersion environment inside of 
a rich cluster of galaxies. As with seeded clumps it is difficult to accurately estimate 
the fraction of dense clumps which survive the epoch of mergers. Here we suggest that 
f=r N 0.1 is a plausible value. 

Now consider survival of the clumps at the present epoch. In the string or texture 
scenario, most of the mass in dense clumps is in the very smallest clumps which were 
seeded at very early times. -These clumps are thus unrelated to the perturbations which 
formed the large scale structure in our universe. Therefore we do expect to find many 
clumps of CDM between the galaxies, since most of the matter in the universe has not 
accreted onto gahuies. However even those clumps which do fall into galaxies are fairly 
robust. The central cores of the seeded clumps have a density equal to the density of 
CDM at the epoch of matter-radiation equality, i.e., roughly 10’ Ma pc-sR:hs. Aside 
from compact objects (stars and planets) and molecular cloud cores, these cloudlets are 
denser than any other known astronomical object, at least if De 5 1. In particular they 
are denser than galaxy clusters, galaxies, and other smaller star clusters. Thus while 
the outer halos of these clumps may be tidally stripped through interactions with these 
objects the cores will not be tidally disrupted. A similar grgument can be made for 
clumps in the inflationary scenario even though their density is much less. 

Clumps which are not tidally disrupted by a galaxy may still spiral into the center 
due to dynamical friction. This is much more likely to happen in smaller dwarf galaxies 
than in large bright galaxies. Here we will concentrate on galaxies like our own. For a 
given clump, it is the mass of the outer halo of the clump and not the inner core which 
will determine ‘the dynamical friction time, which is inversely proportional to the mass 
of the clumps. Something as massive as a globular cluster (- 10”Mo) will be drawn 
intothe center from a distance of w lkpc in about a Hubble time (Binney and Tremaine 
1987). In the’string-seeded case, we see that not even the largest clumps, and including 
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any halo, would be massive enough to be drawn into the Galactic center by dynamical 
friction. In contrast in the inflationary scenario essentially all clumps in the inner parts 
of the Galaxy may have be drawn toward the center. 

When considering dynamical friction and texture seeded clumps, we should note 
that much of the halo of any texture seeded clump will be tidally stripped by our Galaxy. 
Nevertheless we can be assured that some of the larger clumps will retain enough mass 
so that dynamical friction will be able to drag the clumps to the center. At the high 
mass end this process will be what is normally referred to as galaxy merging. We can 
also be assured that the smallest clumps can escape dynamical friction in the inner 
regions of our galaxy, and in particular, that clumps will remain at the solar galactic 
radius. An important difference between the texture scenario and the other scenarios is 
-that our Galaxy is probably just a large clump and should have a dense core of CDM 
at its center. Even if the Galaxy were the merger of a few large clumps this conclusion 
would remain. This does not mean that the Galaxy is dominated by CDM all the way 
to its center, as baryonic infall could change this. There should however be a core of 
CDM with a density -. pes at the center. Comparing equations (3.12) and (3.6) we see 
that if we assign a mass of 1012Ma to the Galactic halo then the mass in the core should 
be N 10sMo. It is quite plausible that cooling baryons might form a black hole in the 
center which could subsequently swallow some of the central core of CDM. However 
since the CDM has no mechanism to lose angular momentum, it is unlikely that the 
black hole would swallow much of the CDM core. 

In addition to being eaten by larger objects, clumps may also destroy themselves. 
There are at least two mechanisms by which clumps could decrease their density. One 
is through collisions with other clumps or stars, in which the gravitational interaction 
will “heat” the clump core causing its density to decrease. It is the head-on rather than 
the large impact parameter collisions which do the most damage. Since the velocity 
of the clumps in a galaxy halois much greater than their internal velocity dispersion, 
many head-on collisions will be required to have a significant effect. We do not expect 
collisions will have much of an effect on the corkspf the CDM clumps in the Galaxy in 
any of the scenarios. 

The other mechanism by which CDM clumps can decrease their density is through 
mass loss by annihilating CDM particles. This clearly would not apply to axions which 
do not annihilate. According to the usual calculation of the freeze-out of particle number 
density, the annihilation cross-section at freeze-out is-given by 

(uu)f,ec,c X 3 x 10-27cm3s-1 wo~2r’ (2) i ( 2g=;::,e) (5.5) 

(Kolb and Turner 1989), where g,ret,e is the effective number of relativistic degrees of 
freedom at freeze-out. We may write the present annihilation rate as 

(4 = ccrwrre,e (5.6) 
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If s-wave annihilations -dominate at -freeze out then cfl N 1 while in general c, < 1. 
Today the rate of density loss in a clump directly to annihilation is 

b - M,n:(ov) - H$ = 0.3~ P l&V s 6 

P 
,-rMR,h . 

Pen I 
(5.7) 

It is clear that in the inflationary scenario annihilations cannot have much of a dynam- 
ical effect since pcore < peq. On the other hand, for the texture and string models 
annihilation may just be beginning to be important for the lighter dark matter candi- 
dates (M. N 1 GeV). Let us consider the dynamical effects of annihilation. Suppose the 
core of a clump initially‘has density pi then we may define an annihilation timescale 

-EL% 1 
7 Pi 

= &(LTt7). 

We will, of course, assume that all of the annihilation products leave the core of the 
clump. Since the annihilation timescale is much longer than the dynamical timescale, 
as the clump core loses mass the orbits or the remaining particles will adiabatically 
expand. The adiabatic invariant is just the size of the orbit times, the velocity of the 
particle. Using this one may show 

M 
M corei 

co’= =-(I + ;r$)i PCOIe 
Pcore,i _ 
1+45’ 

The clumpiness of the medium will thus decay as (1 + 4$)-i. However we see from 
(5.7) that this effect will only be important for the lightest CDM candidates. 

We conclude this section by noting that one of the largest uncertainties concerns 
the survival fraction of clumps. To this we can only offer educated guesses. Even a very 
small survival fraction can lead. to significant dumpiness. Thus the difficult question 
that must be answered is just how rare is the special environment required for the 
survival of clumps. This is clearly an area which requires further study before we can 
decide just how much dumpiness we should expect. 

VI. OBSERVABLE IMPLICATIONS 

For many purposes it does not matter whether the dark matter is clumped or 
smoothly distributed. The dynamical effect on galaxy rotation curves, galaxy cluster 
velocity dispersion, or large scale peculiar velocities will not depend on whether the dark 
matter is.clumped or smoothly distributed within the halos. If the halo of our Galaxy 
is too lumpy then heating of the observed thin disk may occur. However in none of the 
scenarios is this likely to be much of a problem. Even if all of the halo were made of 
clumps, the clumps would have to have a mass greater than 10sMa for unacceptable 
heating to occur (Lacey and Ostriker 1985). In the string or texture scenario the smallest 
clumps which have most of the mass’ are smaller than 10s MB. In all of the scenarios 
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the larger clumps which might cause a problem would contain only a small fraction of 
the mass of the halo. 

Another way one might observe these clumps is if they were to accrete a baryonic 
halo. Fist consider the smallest clumps in either the string or texture scenario. Prom 
equation (5.1) we see that the virial temperature of the cores of the smallest clumps 
is only -, 10K. It is unlikely that any significant amount of baryons achieved such a 
low temperature so we do not expect them to accrete baryons. The halos of the small 
clumps in the string scenario will have even lower virial temperatures so they also will 
not accrete baryons. We see from equation (5.3) the halos of the smallest clumps in 
the texture scenario have only marginally greater virial temperature than the cores so 
again there will be no baryonic accretion. 

In the inflationary CDM scenario where the clumps are about the size and mass 
of globular clusters, we might plausibly expect baryonic accretion. In fact these clumps 
might be the origin of globular clusters. If so then the CDM concentrations in cores 
of these globular clusters can affect stellar evolution. A plausible range of cross-section 
allows WIMP energy transport to result in the development of an isothermal core in 
main sequence stars. This can affect the observed luminosity function of globular cluster 
stars (Dearborn, et 01. al. 1992). 

In any case, dynamical friction will cause some of the population of globular 
cluster-sized clumps to spiral into the disk, resulting in a source of disk dark matter. 
(Lake 1989), and also to spiral into galactic nuclei, leading to dark matter in the central 
spheroids. One feature of inhomogeneous dissipationless collapse is that clumps tend to 
preserve their initial density, despite undergoing considerable merging. One therefore 
ends up with a central cloud of CDM, whose density is similk to the cold dark matter 
density in clumps which made it, i.e. 2 lOMopc-‘. As mentioned previously, in the 
texture scenario a central cloud of CDM is expected to form before the galaxy. One 
observational signature of these central CDM clouds include detection of a concentrated 
dark matter core in a galaxy whose nucleus is apparently too diffuse to allow black hole 
formation by conventional means (Salati and Silk 1989). 

CDM annihilations can result in a detectable diffuse background of gamma rays. 
Annihilations of a majorana particle candidate for CDM, such as the photino, result in 
GeV gamma rays, as well as energetic neutrinos, electron-positron pairs, and proton- 
antiproton pairs (Silk and Srednicki 1984). One can also observe the resulting isotropic 
7-ray ’flux produced by CDM annihilations at characteristic energy w O.lm. back to 
.z * 100 prior to which the universe absorbed GeV gammas via pair production, 7 +p = 
7 + p + e+ + e- (Stecker 1978). In the case of annihilation of CDM in fixed density 
clumps, most of the emission comes from the last expansion time. Let us parameter&e 
the fraction~~of the annihilation energy which is emitted as energetic photons by by. Most 
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the energy released in annihilations will have been emitted in the last Hubble time so 
the present energy density annihilation photons will be 

f7 - 
(6.1) \ I 

where C is the clumpiness factor and we have used equation (5.5) for the cross section. 
‘The energy at which most annihilation photons will be emitted will depend on details 
of the annihilation channels, but generically we might expect ET 5 0.1A4.c2. It is easy 
to see that in the inflationary scenario the clumpiness factor is too small to produce 
a significant r-ray background compared to what is observed. For strings or textures 
where the clumps have a density - pep we see that 

&-, e., 2.3 x lo-Of,,, fer bI ce fl; ho (g) (&)’ (2zf:,) ergcm-‘. (6.2) 

Observations clearly preclude that f.1 fcr b, c, Gi he - 1, but a small survival fraction 
with a low Hubble constant is possible. 

We m,ay not only detect the general background of radiation produced by anni- 
hilating matter in clumps, but it is possible to see individual clumps as well. Again we 
restrict our attention to the dense clumps~ produced in the string or texture scenario. 
Let us consider the smallest clutips which produce most of the r-rays. The dark-matter 
halo density at the solar radius-is or, - 10e2 Ma Mpc-s. Given that a fraction farfer of 
the dark matter in these smallest clumps, the angular size of the nearest clump should 
be 

en N (hh-f-)’ - 5’ (fdfccl Oi4h-‘) f (6.3) 

which certainly would be unresolved by any planned r-ray observatories. With the mass 
function of clumps given by equations (2.13) or (3.9) the nearest small clump should 
have a larger angular size (by a logarithmic factor) than the nearest big clump. The 
number density of the bigger clumps are so much smaller that the nearest ones tend 
to be much further away. The central bolometric y-ray brightness of the string- or 
texture-seeded clumps is peq is given by 

4 -&b,&, 

-2 x lO~“b,c.Sl~h’~( 2) ’ (~2$IIs.) ($) (F) ergcm-2s-1sr-1, 

(6.4) 
which would be difficult to detect even if it subtended a far greater solid angle. If fs.1 is 
the CDM fraction of ma&within the solar radius of our Galaxy, then the total flux from 
~the inner Galaxy is down by a factor fs~(p~.&.~)/(p,.&) m lo-sfs.1 when compared 

19 



to the clump cores. Such a low flti would be difficult to detect. In the inflationary 
scenario this flux would be down by at least an additional factor of pcJpep - 10-O. Thus 
while there may be enhanced emission from the Galactic center (Silk and Bloemen 1987) 
and/or the central halo (Lake 1990a,b), the flux should be fairly small. 

There are many experimental efforts underway to detect the the Galactic halo 
dark matter directly, as it passes through the laboratory. The predicted rates for detec- 
tion events usually assume the halo material is smoothly distributed in the halo, and 
thus a laboratory will, over the duration of the experiment, contain a fair sample of 
dark matter particles. If the halo is clumpy this will not be the case. When the earth is 
passing through a cloud of dark matter then the number of particles in the laboratory 
will be significantly greater than average, and while the earth is not the signal could be 
significantly less than average. If all the dark matter were in clouds as dense as peq then 
this would make dark matter.detection untenable, since only a fraction ph.lo/peq - 10-O 
of the time would-the earth be passing through a dark matter cloud. However we do 
not really expect this to be the case. In all of the scenarios considered here, the small 
clouds will be tidally stripped of their’outer halos as they accrete onto larger and larger 
structures. Some of this tidally stripped dark matter would eventually find itself to be 
more or less smoothly distributed throughout the Galactic halo. We do expect that a 
large fraction of the dark matter will be tidally stripped off the outer parts of the clump 
halos, and hence the density of dark matter in the laboratory will be close to the mean 
for the halo most of the time. However if the earth were passing through a cloud of 
dark matter then the signal might be significantly enhanced. In the rare circumstance 
that the earth would be passing through the-core of a texture- or string-seeded clump 
then the enhancement might be as much as a factor of 10’. 

This research has been supported in part by the D.O.E. at Berkeley and Fermilab and 
by NASA grant NAGW-2381 at Fermilab. 
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